PVP 19

ENGINEERING MATHEMATICS-III (PDE, COMPLEX VARIABLES &TRANSFORM TECHNIQUES)

Course		19BS1301	Year	II	Semester	I		
Code								
Course Category		Basic Sciences course Branch		EEE	Course Type	Theory		
Cred	lits	3	L-T-P	3-0-0	Prerequisites	Nil		
Continuous Internal		30	Semester End	70	Total Marks:	100		
Evalu	ation:		Evaluation:					
	Course Outcomes							
Aft	After successful completion of the course, the student will be able to							
CO1	Determ	Determine Laplace transform and inverse Laplace transforms of given function(s).						
CO2	Develop a Fourier seriesin terms of sine and cosine of a given function.							
CO3	Find out Fourier sine and cosine transforms.							
CO4	Determine complex potential function, evaluate integrals by applying Cauchy's integral formula and construct series expansions of complex functions.							
1 (())	Apply method of separation of variables to find the solution of wave, heat, Laplace equations with given boundary conditions.							

	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3-High, 2: Medium, 1:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2										2	2	
CO2	3	2										2	2	
CO3	3	2										2	2	
CO4	3	2										2	2	
CO5	3	2										2	2	

LINUT	Contents	Mapped		
UNIT	Contents			
No.		COs		
I	Laplace Transforms & Inverse Laplace Transforms 12 hrs Definition of Laplace transform, properties of Laplace transforms, transforms of derivatives, transforms of integrals, multiplication by t^n , division by t , unit step function, unit impulse function. Inverse Laplace transforms by partial fractions, convolution theorem (All theorems/properties without proofs)	CO1		
II	Fourier Series 7 hrs Fourier series, Dirichlet's conditions, functions of any period, odd and even functions - half range series. (All theorems/properties without proofs)	CO2		
Ш	Fourier Transforms 6 hrs Fourier integrals, Fourier cosine and sine integrals, Fourier transform, sine and cosine transform. (All theorems/properties without proofs)	CO3		

IV	Complex Variables Differentiation, Cauchy-Riemann equations, analytic functions, harmonic functions, finding harmonic conjugate. Cauchy theorem, Cauchy integral formula, Taylor's series, Laurent's series. (All theorems/properties without proofs)	CO4
V	Applications of Partial Differential Equations Classification of second order partial differential equations, method of separation of variables, solutions of one dimensional wave equation, one dimensional heat equation and two dimensional Laplace's equation in cartesian coordinates.(All theorems/properties without proofs)	CO5

Learning Recourse(s)

Text Book(s)

- 1. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 44/e, 2019.
- 2. Erwin Kreyszig, Advanced Engineering Mathematics, 9/e, John Wiley & Sons, 2006.

Reference Book(s)

1. N.P. Bali and Manish Goyal, A Text book of Engineering Mathematics, Laxmi Publications, 2008.

e- Resources & other digital material

- 1. https://www.nptel.ac.in/courses/111/105/111105123/
- 2. https://www.nptel.ac.in/courses/111/105/111105134/
- 3. https://www.nptel.ac.in/courses/111/105/111105093/